Aggregation-based aggressive coarsening with polynomial smoothing

نویسنده

  • James Brannick
چکیده

This paper develops an algebraic multigrid preconditioner for the graph Laplacian. The proposed approach uses aggressive coarsening based on the aggregation framework in the setup phase and a polynomial smoother with sufficiently large degree within a (nonlinear) Algebraic Multilevel Iteration as a preconditioner to the flexible Conjugate Gradient iteration in the solve phase. We show that by combining these techniques it is possible to design a simple and scalable algorithm. Results of the algorithm applied to graph Laplacian systems arising from the standard linear finite element discretization of the scalar Poisson problem are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial of Best Uniform Approximation to 1/x and Smoothing in Two-level Methods

We derive a three-term recurrence relation for computing the polynomial of best approximation in the uniform norm to x−1 on a finite interval with positive endpoints. As application, we consider two-level methods for scalar elliptic partial differential equation (PDE), where the relaxation on the fine grid uses the aforementioned polynomial of best approximation. Based on a new smoothing proper...

متن کامل

Reducing complexity of algebraic multigrid by aggregation

In order to decrease computational costs and memory requirements of relatively expensive classical algebraic multigrid (AMG) methods, we investigate its combination with aggressive coarsening schemes based on the plain (non-smoothed) aggregation on a fixed number of fine levels. Equivalently, we replace the direct solver on the coarsest level of the aggregation method with an inexact classical ...

متن کامل

Improving the arithmetic intensity of multigrid with the help of polynomial smoothers

SUMMARY The basic building blocks of a classic multigrid algorithm, which are essentially stencil computations, all have a low ratio of executed floating point operations per byte fetched from memory. This important ratio can be identified as the arithmetic intensity. Applications with a low arithmetic intensity are typically bounded by memory traffic and achieve only a small percentage of the ...

متن کامل

PRECONDITIONING OF DISCONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS A Dissertation by VESELIN

Preconditioning of Discontinuous Galerkin Methods for Second Order Elliptic Problems. (December 2007) Veselin Asenov Dobrev, B.S., Sofia University Chair of Advisory Committee: Dr. Raytcho Lazarov We consider algorithms for preconditioning of two discontinuous Galerkin (DG) methods for second order elliptic problems, namely the symmetric interior penalty (SIPG) method and the method of Baumann ...

متن کامل

V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes

In this paper we analyse the convergence properties of V-cycle multigrid algorithms for the numerical solution of the linear system of equations arising from discontinuous Galerkin discretization of second-order elliptic partial differential equations on polytopal meshes. Here, the sequence of spaces that stands at the basis of the multigrid scheme is possibly non nested and is obtained based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013